50. All of the following graphs have equal scales on the axes. One of the graphs shows only points for which the *y*-coordinate is 1 less than the square of the *x*-coordinate. Which one?

F.

J.

G.

K.

H.

57. The graphs of the equations y = x - 1 and $y = (x - 1)^4$ are shown in the standard (x,y) coordinate plane below. What real values of x, if any, satisfy the inequality $(x-1)^4 < (x-1)$?

- A. No real values
- **B.** x < 0 and x > 1
- **C.** x < 1 and x > 2
- **D.** 0 < x < 1
- **E.** 1 < x < 2

34. The graph of $y = -5x^2 + 9$ passes through (1,2a) in the standard (x,y) coordinate plane. What is the value of a?

F. 2 **G.** 4

H. 7

J. -1 K. -8

34. The two parabolas $y = ax^2 + n$ and $y = x^2 + q$ have the same vertex when graphed in the (x,y) coordinate plane. Which of the following must be true?

F. n + q = 0G. nq = aH. nq = 1J. a = 1K. n = q

28. The equation $y = ax^2 + bx + c$ is graphed in the standard (x,y) coordinate plane below for real values of a, b, and c. When y = 0, which of the following best describes the solutions for x?

- **F.** 2 distinct positive real solutions
- G. 2 distinct negative real solutions
- H. 1 positive real solution and 1 negative real solution
- J. 2 real solutions that are not distinct
- **K.** 2 distinct solutions that are not real

56. The graph of the equation $h = -at^2 + bt + c$, which describes how the height, h, of a hit baseball changes over time, t, is shown below.

If you alter only this equation's c term, which gives the height at time t = 0, the alteration has an effect on which of the following?

- I. The *h*-intercept
- II. The maximum value of h
- III. The *t*-intercept
- F. I only
- G. II only
- **H.** III only
- J. I and III only
- K. I, II, and III

STOP! DO NOT

D